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Abstract

In this paper, a neuro-fuzzy network with novel hybrid learning algorithm is proposed. The novel hybrid learning algorithm is based

on the fuzzy entropy clustering (FEC), the modified particle swarm optimization (MPSO), and the recursive singular value

decomposition (RSVD). The FEC is used to partition the input data for performing structure learning. Then, we adopt the MPSO to

adjust the antecedent parameters of fuzzy rules. Two strategies in the MPSO, called the effective local approximation method (ELAM)

and the multi-elites strategy (MES), are proposed to improve the performance of the traditional PSO. Moreover, we will apply RSVD to

obtain the optimal consequent parameters of fuzzy rules. The proposed hybrid learning algorithm achieves superior performance in

learning speed and learning accuracy than those of some traditional genetic methods.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Neuro-fuzzy networks have been demonstrated to be
successful [10,17–20,23–25,27]. It combines the semantic
transparency of rule-based fuzzy systems and the learning
capability of neural networks. Neuro-fuzzy networks have
two typical types which are Mamdani-type and TSK-type
models. For Mamdani-type neuro-fuzzy networks [19,27],
the minimum fuzzy implication is used in fuzzy reasoning.
Meanwhile, for TSK-type neuro-fuzzy networks (TNFNs)
[10,17,20,23], the consequence of each rule is a function
input variable. The general adopted function is a linear
combination of input variables plus a constant term. Many
researchers [10,17] have been shown that a TNFN achieves
superior performance in network size and learning
accuracy than that of a Mamdani-type neuro-fuzzy net-
work.
e front matter r 2007 Elsevier B.V. All rights reserved.
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The back-propagation (BP) learning algorithm [18] is
widely used for training neuro-fuzzy networks by means of
error propagation via variation calculus. However, the BP
learning algorithm is a powerful training technique that
can be applied in networks with feed-forward structure to
transform them into adaptive systems. But the algorithm
may reach the local minima and the global solution may
never be found because the steepest descent optimization
technique is used in BP training to minimize the error
function. In addition, the performance of the BP learning
algorithm depends on the initial values of the model
parameters, and for different network topologies one has
to derive new mathematical expressions for each network
layer. About this, the advent of evolutionary computation
has inspired new designs and models. In contrast to
traditional computation systems, which may be good at
accurate and exact computation but have brittle opera-
tions, evolutionary computation provides a more robust
and efficient approach for solving complex real-world
problems [2,6,28]. For this reason, many researchers use
genetic algorithms (GAs) for learning of fuzzy models. In

www.elsevier.com/locate/neucom
dx.doi.org/10.1016/j.neucom.2006.12.016
mailto:cjlin@mail.cyut.edu.tw


ARTICLE IN PRESS
C.-J. Lin, S.-J. Hong / Neurocomputing 71 (2007) 297–310298
the literature [9,11,16], several GA-based approaches have
appeared and have better candidates than BP algorithm.

Recently, a new algorithm, called particle swarm
optimization (PSO), was proposed. It is an evolutionary
computation technique developed by Kennedy and Eber-
hart in 1995 [14]. The underlying motivation for the
development of PSO algorithm was social behavior of
animals such as bird flocking, fish schooling, and swarm
theory. The PSO begins with a random population and
searches for optima by updating the population. The
advantages of PSO are that it has no evolution operators
such as crossover and mutation and it need not adjust too
many free parameters. Moreover, each potential solution is
also assigned a randomized velocity. The potential solu-
tions, called particles, are then ‘‘flown’’ through the
problem space. Compared with the GA, the PSO has some
attractive characteristics. First, the PSO has memory. The
knowledge of good solutions in the PSO is retained by all
particles; whereas in the GA, the previous knowledge of the
problem is destroyed when the population is changed.
Second, the PSO has constructive cooperation between
particles. The particles in the swarm share information
between them. Successful applications of the PSO for
several optimization problems, like control problems
[1,7,29] and feed-forward neural network design [12,21].
Therefore, we introduce a modified PSO (MPSO) to
determine the antecedent parameters of fuzzy rule.

In this paper, we propose a novel hybrid learning
algorithm for neuro-fuzzy networks. The construction of
neuro-fuzzy networks involves two phases: structure
learning and parameter learning. In structure learning,
the input data set is partitioned into a set of clusters using
fuzzy entropy clustering (FEC). Membership functions
associated with each cluster are defined according to
statistical means and variances of the data points that
were included in the cluster. Then a fuzzy rule is extracted
from each cluster to form a fuzzy rule base. In parameter
learning, most neuro-fuzzy networks use BP to refine
parameters of the system. However, BP suffers from the
problems of local minima and lower convergence rate. To
decrease the size of the search space and speed up the
convergence, we propose a MPSO to adjust the antecedent
parameters of fuzzy rules. In the MPSO, two strategies,
called effective local approximation method (ELAM) and
multi-elites strategy (MES), are proposed to improve the
performance of the traditional PSO. Moreover, we adopt
the recursive singular value decomposition (RSVD) to
determine the optimal consequent parameters of fuzzy
rules. The proposed hybrid learning algorithm has the
following advantages: (1) Using the MPSO to find the
global optimal solution is easier than the BP method. (2)
Determining the initial particles of MPSO by FEC method
can reduce blind search for parameters of fuzzy rules. (3)
The proposed hybrid learning algorithm achieves superior
performance in learning speed and learning accuracy.

This paper is organized as follows. Section 2 describes
the TSK-type fuzzy model. Overview of the PSO is
described in Section 3. In Section 4, we will describe the
proposed hybrid learning algorithm for TNFNs. Section 5
presents the simulation results. Finally, conclusions are
given in Section 6.

2. Structure of a TNFN

A fuzzy model is a knowledge-based system character-
ized by a set of rules, which models the relationship among
control input and output. The reasoning process is defined
by means of the employed aggregation operators, the fuzzy
connectives and the inference method. The fuzzy knowl-
edge base contains the definition of fuzzy sets stored in the
fuzzy database and a collection of fuzzy rules, which
constitute the fuzzy rule base. Fuzzy rules are defined by
their antecedents and consequents, which relates an
observed input state to a desired control action. Most
fuzzy systems employ the inference method proposed by
Mamdani in which the consequence parts are defined by
fuzzy sets [18]. A Mamdani-type fuzzy rule has the form:

IF x1 is A1jðm1j ; s1jÞ and x2 is A2jðm2j ; s2jÞ . . . and

xn is Anjðmnj ;snjÞ THEN y0 is Bj ðmj ;sjÞ, ð1Þ

where mij and sij represent a Gaussian membership
function with mean and deviation with ith dimension and
jth rule node. The consequences Bj of jth rule is aggregated
into one fuzzy set for the output variable y0. The crisp
action is obtained through defuzzification, which calculates
the centroid of the output fuzzy set. Besides the more
common fuzzy inference method proposed by Mamdani,
Takagi, Sugeno and Kang introduced a modified inference
scheme [23]. The first two parts of the fuzzy inference
process, fuzzifier the inputs and applying the fuzzy
operator are exactly the same. A Takagi–Sugeno–Kang
(TSK)-type fuzzy model employs different implication and
aggregation methods than the standard Mamdani con-
troller. Instead of using fuzzy sets the conclusion part of a
rule, is a linear combination of the crisp inputs:

IF x1 is A1jðm1j ; s1jÞ and x2 is A2jðm2j ; s2jÞ . . . and

xn is Anjðmnj ;snjÞ THEN y0 ¼ w0j þ w1jx1 þ � � � þ wnjxn.

ð2Þ

Since the consequence of a rule is crisp, the defuzzification
step becomes obsolete in the TSK inference scheme.
Instead, the control output is computed as the weighted
average of the crisp rule outputs, which is computationally
less expensive then calculating the center of gravity.
In this paper, the structure of the TNFN is shown in

Fig. 1, where n and R are, respectively, the number of input
dimensions and the number of rules. It is a five-layer
network structure. The functions of the nodes in each layer
are described as follows:

Layer 1 (Input node): No function is performed in this
layer. The node only transmits input values to layer 2.

u
ð1Þ
i ¼ xi; i ¼ 1 . . . n. (3)
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Fig. 1. Structure of the TNFN model.
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Layer 2 (Membership function node): Nodes in this layer
correspond to one linguistic label of the input variables in
layer 1; that is, the membership value specifying the degree
to which an input value belongs to a fuzzy set is calculated
in this layer. For an external input xi, the following
Gaussian membership function is used:

u
ð2Þ
ij ¼ exp �

½u
ð1Þ
i �mij �

2

s2ij

 !
; j ¼ 1 . . .R, (4)

where mij and sij are, respectively, the center and the width
of the Gaussian membership function of the jth term of the
ith input variable xi.

Layer 3 (Rule node): The output of each node in this
layer is determined by the fuzzy AND operation. Here, the
product operation is utilized to determine the firing
strength of each rule. The function of each rule is

u
ð3Þ
j ¼

Y
i

u
ð2Þ
ij . (5)

Layer 4 (Consequent node): Nodes in this layer are called
consequent nodes. The input to a node in layer 4 is the
output delivered from layer 3, and the other inputs are the
input variables from layer 1 as depicted in Fig. 1. For this
kind of node, we have

u
ð4Þ
j ¼ u

ð3Þ
j w0j þ

Xn

i¼1

wijxi

 !
, (6)

where the summation is over all the inputs and wij are the
corresponding parameters of the consequent part. The wij is
any real value. If wij ¼ 0, I40, the TNFN model in this
case will be called the zero-order TNFN model.

Layer 5 (Output node): Each node in this layer
corresponds to one output variable. The node integrates
all the actions recommended by layers 3 and 4 and acts as a
defuzzifier with

y ¼ uð5Þ ¼

PR
j¼1u

ð4Þ
jPR

j¼1u
ð3Þ
j

¼

PR
j¼1u

ð3Þ
j ðw0j þ

Pn
i¼1wijxiÞPR

j¼1u
ð3Þ
j

. (7)
3. An overview of PSO

PSO is a recently invented high performance optimizer
that possesses several highly desirable attributes, including
the fact that the basic algorithm is very easy to understand
and implement. It is similar to GAs and evolutionary
algorithms, but requires less computational memory and
fewer lines of code. The PSO conducts search using a
population of particles which correspond to individuals in
GA. Each particle has a velocity vector ~vi and a position
vector ~xi to represent a possible solution.
Consider an optimization problem that requires the

simultaneous optimization of variables. A collection or
swarm of particles are defined, where each particle is
assigned a random position in the N-dimensional problem
space so that each particle’s position corresponds to a
candidate solution to the optimization problem. Then the
particles fly rapidly over and search the space with the
moving velocity of each particle. The PSO has a simple
rule. Each particle has three choices in evolution: (1) Insist
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Setup problem and
define constrains

Initialze swarm:

1. Random positions
2. Random velocities
3. Score each particle

Score solutionre presented by new particle position

Updtae position ofi th particle

Is this particle the best found
by this particles so far ? 

Update Local best

Is terminate ?

Solution is final Global best

Is this particle the best found
by any particles so far ? 

Update Global best

YES

No

YESNo

YES

No

When an iteration finish

xi (k + 1) = xi (k) + vi (k+1)

Update velocity of i th  particle

vi (k +1) = �∗vi (k)+�1 ∗ rand()∗ (Lbest − xi(k))+�2 ∗ rand()∗(Gbest − xi(k))
 

Fig. 3. PSO typical flowchart illustrates the steps and update equations.
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on oneself. (2) Move towards the optimum itself at present.
Each particle remembers its own personal best position
that it has ever found, called the local best. (3) Move
towards the best solution of the population has met. Each
particle also knows the best position found by any particle
in the swarm, called the global best. The PSO reaches a
balance among these three choices.

At each time step, each of these particle positions is
scored to obtain a fitness value based on how well it solves
the problem. Using the local best position (Lbest) and the
global best position (Gbest), a new velocity for each particle
is updated by

~viðk þ 1Þ ¼ on~viðkÞ þ f1nrandð ÞnðLbest� ~xiðkÞÞ

þ f2nrandð ÞnðGbest� ~xiðkÞÞ, ð8Þ

where o, f1 and f2 are called the coefficient of inertia,
cognitive and society study respectively. The rand( ) is
uniformly distributed random numbers in [0,1]. The term~vi

is limited to the range�~vmax. If the velocity violates this
limit, it will be set at its proper limit. The concept of the
updated velocity is illustrated in Fig. 2.

Changing velocity enables every particle to search
around its individual best position and global best position.
Based on the updated velocities, each particle changes its
position according to the following:

~xiðk þ 1Þ ¼ ~xiðkÞ þ~viðk þ 1Þ. (9)

When every particle is updated, the fitness value of each
particle is calculated again. If the fitness value of the new
particle is higher than those of local best, then the local best
will be replaced with the new particle. If the fitness value of
the new particle is higher than those of global best, then the
global best will be also replaced with the new particle. We
repeat above updating process step by step, the whole
Fig. 2. The diagram of the updated velocity in the PSO.
population evolves toward the optimum solution. The
detailed flowchart is shown in Fig. 3.
4. A novel hybrid learning algorithm

In recently years, many researchers [12,13] have pre-
sented some hybrid methods for solving various problems.
Juang [12] propose a hybrid of the GA and the PSO for
recurrent network design. Kumar et al. [13] use the GA
method to construct TSK fuzzy rules. In this paper, we
propose a novel hybrid learning algorithm. The hybrid
learning algorithm consists of the FEC, the MPSO and the
RSVD. The structure learning depends on the FEC to
obtain the number of fuzzy rules and the initial values of
the antecedent parameters. Meanwhile, the parameter
learning is based on the MPSO and the RSVD for
adjusting the shape of the membership functions and the
consequent parameters of fuzzy rules.
The proposed hybrid method improves the convergence

speed and determines a more suitable solution for various
problems. The flowchart of the hybrid learning algorithm is
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Generation initial swarm
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each particle

Using RSVD to produce the consequent
parameters for every particle.

Score solution represented by new particle position
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parameters for each new particle.

The Solution is final Global
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Score each initial particle

Was the finish condition
achieved?

Yes

No

Fig. 4. The simple flowchart of the novel learning algorithm.
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shown in Fig. 4 and the detailed process is described as
follows.
4.1. The FEC

The FEC is proposed by Tran and Wagner [26]. In this
paper, we use FEC to partition the training data into a set
of cluster, and then each fuzzy rule is extracted from each
cluster to form a fuzzy base.

For clustering, the most important requirement is to find
a suitable measure of clusters and objective function
methods are allowed the most precise formulation of
clustering criterion. Let’s consider the following function:

HnðU ; y;X Þ ¼
XC

i¼1

XN

j¼1

uijdðxj;yiÞ þ n
XC

i¼1

XN

j¼1

uij log uij , (10)

where C is the number of clusters, N is the number of data,
n40 is a weight factor, uit 2 ½0; 1� is the membership value
of vector xij in cluster i, yi is a prototype of cluster i, and
d(xj,yi) is defined the distance between xj and yi. The
number of classes (C) is set in advance. In each experiment,
the C is determined by trial and error. We assume that the
matrices U satisfy the following conditions:

XC

i¼1

uij ¼ 1 8t and 0o
XC

i¼1

uijoN (11)

which mean that each xt belongs to C clusters, no cluster is
empty when 2pCoN. The second term in Eq. (10) is the
negative of the following function E(U) multiplied by n:

EðUÞ ¼ �
XC

i¼1

XN

j¼1

uij log uij . (12)

The fuzzy entropy function E(U) expresses the average
degree of non-membership of members in a fuzzy set. The
function E(U) is maximum when uij ¼ 1=C 8i, and
minimum when uij ¼ 0 or 1. On the other hand, the first
term in Eq. (10) also needs to be minimized and obtain a
good partition for X. Therefore, we minimize Lagrangian
form H�nðU ; y;X Þ

H�nðU ; y;X Þ ¼
XC

i¼1

XN

j¼1

uijdðxj;yiÞ þ n
XC

i¼1

XN

j¼1

uij log uij

þ
XC

i¼1

ki

XN

j¼1

uij � 1

 !
. ð13Þ

Then, we obtain following function:

ūij ¼
XC

k¼1

½ed2ðxj ;yiÞ=ed2ðxj ;ykÞ�1=n

( )�1
. (14)

The fuzzy mean vector is formed

ūi ¼
XN

j¼1

ūijxj

,XN

j¼1

ūij. (15)

The weight factor n40 is called the degree of fuzzy
entropy, which determines the partition of X. The FEC has
following characteristics: (a) If n approximates infinity,
then uij approximates 1/C. On the other hand, each feature
vector is equally assigned to C clusters, so we have only one
single cluster. (b) When n approaches zero, the uij

approximates zero or one.
Moreover, the two well-known cluster validity criteria:

the partition coefficient VPC and the partition entropy VPE

are used for FEC. The VPC is an increasing function and
the VPE is a decreasing function. A suitable value of n in
Eq. (14) will be chosen when VPE ¼ VPC [26].

4.2. The MPSO

Two strategies, called the ELAM and the MES, are
proposed for improving the performance of the traditional
PSO. For the traditional PSO and GA, the initial swarm
and population are randomly generated; hence that need a
very long time to converge. For this reason, we wish that a
swarm consists of some approximation optimization
solutions initially. Because all solutions in swarm approx-
imate optimization solutions, the search space will be
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focused in the beginning swarm generated. Therefore, the
learning speed will be improved in the beginning learning.

An ELAM is proposed to obtain a better initial swarm.
First, we set the base particle using the initial parameters of
fuzzy rules which are generated by the FEC, and the fitness
value of particle is calculated. The structure of a particle is
shown in Fig. 5. The parameters mij and sij represent a
Gaussian membership function with mean and deviation
with ith dimension and jth rule node. The deviation is
xijðMaxÞ � xijðMinÞ;mijðxijÞ 2 ½0:4 0:6�.

We add a small perturbation to each position of base
particle to generate new particles. The fitness values of new
particles are calculated. If the fitness values of the new
particles are higher than the fitness value of the base
particle, then the new particles will be reserved in the
swarm. This process is repeated until all particles of the
swarm are produced. When the swarm is generated
initially, all particles are around the base particle and the
cluster (i.e., fuzzy rule) is near approximation optimization
solution. The pseudocode about the ELAM is shown in
Fig. 6. The L and Dl represent the length of a particle and a
very small random value. In this paper, the region of Dl is
the 10% domain space of every position.

Recently, many researches [3,5] focus on global solution
validation measurement in evolution computation. In [3,5],
the elite’s selection is to estimate many factors, not only
single information. The concept is introduced to the PSO,
it can prevent that the swarm tends to the global best too
early in the searching process. Because the global best
found early in the searching process may be a poor local
minima. Therefore, we propose a MES for searching the
global best of the PSO.
m11 m12 mij �ij mnJ �nJ �11 �12

Fig. 5. The structure of a particle.

Fori =1 to N % swarm size is N

If i =1

Particle first is given from FEC.

Measure the fitness value of Particle first (F1).

Else

Do

For j=1 to L     % particle size is L

Positionj of Particlei = Positionj of Particle first ±Δ.

End

Measure the fitness value of Particlei (Fi). 

While (Fi <F1)

End
End 

Fig. 6. The pseudocode of effective local approximation method (ELAM).
We define a growth rate d for each particle. When the
fitness value of a particle of ith iteration is higher than that
of a particle of (i�1)th iteration, the d will be increased.
When the fitness value of a particle of ith iteration is higher
than that of a particle of (i�1)th iteration, the growth rate
will be increased. If the growth rate is always increasing in
the process of evolution, it means that the direction of
adjusting parameters is advantageous to find the optimal
solution. Therefore, when we set the particle to be the
global best, it can attract other particles toward its leading
way. After the local best of every particle is determined in
each generation, we move the local best which has higher
fitness value than the global best into the candidate area.
Then the global best will be replaced by the local best with
the highest growth rate d. Therefore, the fitness value of the
new global best is always higher than the old global best.
The pseudocode about MES is shown in Fig. 7.

4.3. The RSVD

After the antecedent parameters of fuzzy rules are
decided by MPSO, we will determine the optimal
consequent parameters of fuzzy rules. The consequent
parameters of fuzzy rules can be found by singular value
decomposition (SVD) when the antecedent parameters of
fuzzy rules, the training inputs and outputs are given. The
SVD is one of the most useful and powerful tools of
numerical linear algebra and has found successful applica-
tions in various areas such as statistical analysis, image and
signal processing. The traditional SVD needs very large
memory space and time consumption. We adopt the RSVD
[15] for adjusting the consequent parameters of fuzzy rules.
RSVD only requires the decomposition of a small matrix in
For i =1 to G % total generation is G

IF i<>G

For j =1 to N      % swarm size is N

If (the fitness value of particlej in ith iteration > that of particlej in

( i-1)th iteration) 

End

Update Local bestj.

If (the fitness of Local bestj > that of Global best now)

Choose Local bestj put into candidate area.

End

End

Calculate � of every candidate, and record the candidate of �max.

Update the Global best to become the candidate of �max.

Else

Update the Global best to become the particle of highest fitness value.

End

End

�j = �j + 1;

Fig. 7. The pseudocode of multi-elites strategy (MES)
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each generation, leading to less time and space require-
ments.

We assumes that ð~xk; qkÞ be the kth training pattern, ~xk is
input data and qk is desired output. By Eq. (7), the qk is
written

qk ¼ uð5Þ ¼

PR
j¼1u

ð4Þ
jPR

j¼1u
ð3Þ
j

¼

PR
j¼1u

ð3Þ
j ðw0j þ

Pn
i¼1wijxiÞPR

j¼1u
ð3Þ
j

. (16)

And we can rewrite to another form by Eq. (16)

qk ¼ ðvk1o01 þ vk1o11x1 þ � � � þ vk1on1xnÞ

þ � � � þ ðvk2o02 þ vk2o12x1 þ � � � þ vk2on2xnÞ

þ � � � þ ðvkjo0j þ vkjo1jx1 þ � � � þ vkjonjxnÞ

þ � � � þ ðvkRo0R þ vkRo1Rx1 þ � � � þ vkRonRxnÞ, ð17Þ

where

vkj ¼
u
ð3Þ
jPR

j¼1u
ð3Þ
j

.

For all T training patterns, they are denoted a matrix form

Q ¼ ½q1q2:::qT �
T, (18)
For t =1 to T

If t =1

Calculate U(1), Σ(1), and V(1) by Eq.(25.1);

get Σ'(1), and Q'(1) by Eq.(26) (27.1);

get Σ'(t), and Q'(t) by Eq.(26) (27.2);

 

Else

Calculate U(t), Σ(t),and V(t) by Eq.(25.2);  

End

End

Fig. 8. The pseudocode of the RSVD about getting Q0(T), S0(T), and
VT(T).

A ¼

ðv11; v11x11; v11x12; . . . ; v11x1nÞ; ðv12; v12x11; . . . ; v12x1nÞ; . . . ; ðv1R; . . . ; v1Rx1nÞ

..

.

ðvt1; vt1xt1; vt1xt2; . . . ; vt1xtnÞ; ðvt2; vt2xt1; . . . ; vt2xtnÞ; . . . ; ðvtR; . . . ; vtRxtnÞ

..

.

ðvT1; vT1xT1; vT1xT2; . . . ; vT1xTnÞ; ðvT2; vT2xT1; . . . ; vT2xTnÞ; . . . ; ðvTR; . . . ; vTRxTnÞ

2
666666664

3
777777775
¼

a
*T

1

..

.

a
*T

t

..

.

a
*T

T

2
66666666664

3
77777777775
, (19)
W ¼ ½ðo01 o11 � � �on1Þ; ðo02 o12 � � �on2Þ � � � ðo0R o1R � � �onRÞ�
T,

(20)

where Q, A, and W are matrices of T� 1, T � ððnþ 1ÞnRÞ,
and ððnþ 1ÞnRÞ � 1, respectively. We minimize the follow-
ing equation:

JðW Þ ¼ Q� AW
�� �� (21)

to obtain the optimal solution W* using the RSVD.
In RSVD, training patterns are considered one by one

from first pattern until the last pattern. For each pattern,
we want to find the optimal W(t) such that

JðW ðtÞÞ ¼ kQðtÞ � AðtÞW ðtÞk; t ¼ 1 . . .T (22)

is minimized. Note that

AðtÞ ¼

a
*T

1

a
*T

2

..

.

a
*T

t

2
66666664

3
77777775
; QðtÞ ¼

q1

q2

..

.

qt

2
666664

3
777775. (23)

Minimizing Eq. (22) is equivalent to minimize
ĴðW ðtÞÞ ¼ kQðtÞ � S0ðtÞVTðtÞW ðtÞk, (24)

where Q0(t), S0(t), VT(t) and W(t) satisfy

Að1Þ ¼ Uð1ÞSð1ÞVTð1Þ;

S0ðt� 1ÞVTðt� 1Þ

a
*

t

" #
¼ UðtÞSðtÞVTðtÞ; tX2;

8>><
>>: (25)

SðtÞ ¼
S0ðtÞ

0

� �
; tX1, (26)

UTð1ÞQð1Þ ¼
Q0ð1Þ

Q00ð1Þ

" #
;

UTðtÞ
Q0ðt� 1Þ

qt

" #
¼

Q0ðtÞ

Q00ðtÞ

" #
; tX2:

8>>>>><
>>>>>:

(27)

The Q0(T), S0(T), and VT(T) are obtained by the
pseudocode as shown in Fig. 8.
We want to find the optimal W*(T) which minimizes

ĴðY ðTÞÞ ¼ kQ0ðTÞ � S0ðTÞVTðTÞW ðTÞk,
where

Y ðTÞ ¼ VTðTÞW ðTÞ. (28)

Eq. (28) is minimized by Y*(N) such that

Q0ðTÞ � S0ðTÞY �ðTÞ ¼ 0 (29)
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Determine the initial parameters of fuzzy rules
(i.e., the base particle) by the FEC

Setup problem and
define constrains

Using the Effective Local Approximation
Method (ELAM) generate initial swarm

Update velocity of i th particle

Updtae position of i th particle

Is the new particle the best for i th
particleso far  ?

Updatethe local best

Is the fitness value of any local best
better than that of the global best?

Update the global
best

YESNo

YESNo

When the local bestof all
particles are checked

Find the local best
which is better than
the global best at

present

Find the highest growth
rate of the local best

Multi-Elites Strategy
(MES)

Determine the consequent parameters of fuzzy
rules for each particle by RSVD

Score the new particle

Determine the consequent parameters of fuzzy
rules for i th particle by RSVD

Obtain the final global best
solution

When the finish condition
was achieved. 

Is the multi-elites
strategy (MES)

executed?

YES

No

Replace the global
bestwith the local 

bestmax

Score each particle

Fig. 9. The follow chart of hybrid learning algorithm.
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Suppose S0(T) we got is a h0 � ððnþ 1ÞnRÞ diagonal matrix
with each component S0ðTÞij being

S0ðTÞij ¼
0 if iaj;

e0i otherwise;

(
(30)

where h0pððnþ 1ÞnRÞ. The Q0(T) and Y �ðTÞ are repre-
sented by

Q0ðTÞ ¼ ½q01 q02 . . . q0h0 �
T,

Y �ðTÞ ¼ ½y�1 y�2 . . . y�ðnþ1ÞnR�
T. ð31Þ
Then, we obtain

y�i ¼

qi

e0i
if iph0;

0 if h0oipððnþ 1ÞnRÞ:

8<
: (32)

The optimal solution W �ðTÞ is

W �ðTÞ ¼ V ðTÞY �ðTÞ. (33)

When the parameters of consequent are decided, the
particle can be scored to obtain a fitness value for solving
problem. The process of the novel learning algorithm is
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repeated until finish condition is achieved. The complete
follow chart is shown in Fig. 9.
Table 1

The performance comparison with various existing methods

GA method PSO

method

FECMPSO

method

Hybrid learning

algorithm

RMSE

(ave.)

0.085 0.023 0.019 0.000336

RMSE

(best)

0.018 0.011 0.008 0.000103
5. Experimental results

In this section, the novel hybrid learning algorithm is
applied to TNFN design and compare with the GA [16]
and the PSO [14] and the combination of the FEC and the
MPSO (called FECMPSO). The three methods (i.e., GA
[16], PSO [14], and FECMPSO) are used to adjust the
antecedent and consequent parameters of fuzzy rules in
TNFN.

We use three different simulations for all methods. The
first simulation uses the example given by Narendra and
Parthasarathy [22]. The second simulation predicts the
chaotic time series [4], and the third example approximates
a piecewise function [30]. In our simulations, the popula-
tion size is set to 50, the parameters o, f1 and f2 of the
Fig. 10. Results of the desired output and (a) GA, (b) PSO
PSO and the MPSO are set to 0.4, 2, and 2, and the
crossover and mutation probabilities of the GA are set to
0.5 and 0.3, respectively. All the programs were developed
using MATLAB 6.1 software and each problem was
simulated on a Pentium III 1GHz desktop computer.
Example 1. (Identification of nonlinear dynamic system)
The first example used for identification is described by the
, (b) FECMPSO and (d) the hybrid learning algorithm.
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Fig. 11. The learning curves of the hybrid learning algorithm, GA, PSO

and MPSO.

Fig. 13. The prediction errors of the hybrid learning algorithm.

Fig. 12. The prediction results of (a) the GA method, (b) the PSO, (c) the MPSO and (d) the hybrid learning algorithm.
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Fig. 14. The learning curves of the GA method, the PSO, the MPSO and

proposed hybrid learning algorithm for prediction problem.

Table 2

The performance comparison with various existing methods

GA

method

PSO

method

FECMPSO

method

Hybrid learning

algorithm

RMSE

(ave.)

0.019 0.012 0.010 0.000243

RMSE

(best)

0.011 0.006 0.006 0.000234

Fig. 15. The learning curves of the GA, the PSO, the MPSO, and the

hybrid learning algorithm for piecewise problem.
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difference equation:

yðk þ 1Þ ¼
yðkÞ

1þ y2ðkÞ
þ u3ðkÞ. (34)

The output of this equation depends nonlinearly on both
its past value and the input, but the effects of the input and
output values do not additive. The 100 training input patterns
are randomly generated in the interval [�2,2], and the 100
testing input patterns are also generated by the same method.
Evolution progressed for 1000 generations and repeated 50
trials. In each trial, we used a set of different initial swarms.
To show the effectiveness and efficiency of the proposed
hybrid learning algorithm, a TNFN using the GA, PSO and
MPSO methods are applied to the same problem. After using
the FEC for performing input space partition, we obtain five
fuzzy rules. The final fuzzy rules of the TFM using the hybrid
learning algorithm are described as follows:

Rule 1: IF x1 is A11(1.1818, 2.0947) and x2 is A21(1.0165,
0.9485)

THEN y0 ¼ �8:5416þ 2:5689x1 � 0:7287x2

Rule 2: IF x1 is A12(�1.1893, 0.8832) and x2 is A22(0.5600,
1.9776)

THEN y0 ¼ �0:2095� 0:5733x1 � 1:7868x2

Rule 3: IF x1 is A13(�0.1193, 2.4693) and x2 is A23(0.4798,
1.7983)

THEN y0 ¼ �0:8614� 1:8437x1 þ 16:4487x2

Rule 4: IF x1 is A14(�0.2011, 2.1739) and x2 is A24(�0.8542,
1.2091)

THEN y0 ¼ 17:1529� 1:8978x1 þ 1:9976x2

Rule 5: IF x1 is A15(�1.5298, 1.6492) and x2 is A25(�1.7533,
12.7969)

THEN y0 ¼ �18:1112� 4:9666x1 þ 1:2256x2

After 1000 generations, the final average best root mean
square error (RMSE) of the output approximated
0.000336. Fig. 10(a)–(d) show the outputs of the four
methods for the input uðkÞ ¼ sinð2pk=25Þ. As shown in Fig.
10(a)–(d), the identification ability of the hybrid learning
algorithm is better than those of the GA, PSO and
FECMPSO methods. In Table 1, we observe that the
average and best RMSE of the PSO are smaller than that
of GA, but are still larger than that of the proposed hybrid
learning algorithm. Fig. 11 shows the RMSE curves of the
four methods. We can find that the hybrid learning
algorithm obtains a lowest RMSE value than the others.

Example 2. (Prediction of the chaotic time series) The
Mackey–Glass chaotic time series x(t) in consideration here
is generated from the following delay differential equation:

dxðtÞ

dt
¼

0:2xðt� tÞ
1þ x10ðt� tÞ

� 0:1xðtÞ. (35)

Crowder [4] extracted 1000 input–output data pairs {x, yd}
which consist of four past values of x(t), i.e.

½xðt� 18Þ; xðt� 12Þ;xðt� 6Þ;xðtÞ; xðtþ 6Þ�, (36)

where t ¼ 17 and x(0) ¼ 1.2. There are four inputs to
model, corresponding to these values of x(t), and one
output representing the value x(t+Dt), where Dt is a time
prediction into the future. The first 500 pairs (from x(1) to
x(500)) are the training data set, while the remaining 500
pairs (from x(501) to x(1000)) are the testing data set used
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Fig. 16. The results of approximation using (a) the GA method, (b) the PSO method, (c) the MPSO method, and (d) the hybrid learning algorithm.

Table 3

The performance comparison with various existing methods

GA

method

PSO

method

FECMPSO

method

Hybrid learning

algorithm

RMSE

(ave.)

1.13 0.28 0.18 0.006

RMSE

(best)

0.72 0.12 0.11 0.002
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for validating the proposed method. After using the FEC
for performing input space partition, we obtain six fuzzy
rules. The average best RMSE of the prediction output
approximates 0.000243 after 500 generations.

In this example, we compared the proposed hybrid
learning algorithm with those of other methods. Fig.
12(a)–(d) show the prediction results of the GA, PSO,
FECMPSO and the hybrid learning algorithm. We observe
that the prediction result of the hybrid learning algorithm is
better than those of other methods. The prediction errors of
the proposed hybrid learning algorithm are shown in Fig. 13.
Fig. 14 shows the RMSE curves of the four models. In this
figure, we find that the proposed method converges quickly
and obtains a lower RMSE than other models.
Table 2 shows the comparison results of the prediction

performance among other methods. The RMSE obtained by
hybrid learning algorithm is very smaller than all methods.

Example 3. (Approximation of the piecewise function) The
piecewise function is studied by Zhang [30] and Xu [8] and
is defined as

f ðxÞ ¼

�2:186x� 12:864; �10pxo� 2;

4:246x; �2pxo0;

10e�0:05x�0:5 sin½ð0:03xþ 0:7Þx�; 0pxp10

8><
>:

(37)

over the domain D ¼ [�10, 10]. The piecewise function is
continuous and can be analyzed. However, traditional
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Table 4

The average computation time of three examples (Unit:sec)

GA method [16] PSO method [14] FECMPSO method Hybrid learning algorithm

Identification of nonlinear dynamic system 374.547 352.735 421.75 302.37

(1000 generations) (1000 generations) (1000 generations) (300 generations)

1007.9

(1000 generations)

Prediction of the chaotic time series 1048.14 1014.788 1069.047 937.45

(500 generations) (500 generations) (500 generations) (250 generations)

1874.9

(500 generations)

Approximation of the piecewise function 918.797 904.609 1027.032 832.34

(1000 generations) (1000 generations) (1000 generations) (300 generations)

2774.46

(1000 generations)
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analytical tools are inadequate and often fail. This failure
may be due to two reasons, namely, the wide-band
information hidden at the turning points and the amalga-
mation of linearity and nonlinearity.

In this example, 200 training input patterns and 200 testing
input patterns are uniformly generated from Eq. (37). There
are seven fuzzy rules generated by the FEC in this example.
The RMSE curve is shown in Fig. 15. Fig. 16(a)–(d) show the
outputs of the function f and all methods. The solid line
represents the output of function f, and the dotted line
represents the approximation of various methods.

The results comparing our model with other models are
tabulated in Table 3. The simulation results demonstrate
that the hybrid learning algorithm obtains very good
approximation capability than other methods.

We find that the proposed hybrid learning algorithm has
a better performance than the GA, the PSO, and the
FECPSO from the three different simulations. In addition,
the learning speed of the FECMPSO is faster than that of
the PSO in the beginning learning process while the RMSE
of the FECMPSO is lower than that of the PSO in the
ending learning process.

In addition to the comparison of learning performance,
the time consumed of every learning method for three
examples is also shown in Table 4. We can see that the
average computation time of the proposed hybrid learning
algorithm is longer than the other methods, owing to the
use of more complex matrix computation of the RSVD.
However, our algorithm can converge quicker and obtain a
better performance than the other methods for about
200–300 generations. In the three examples, the proposed
method only consumes 302.37 and 832.34 s for 300
generations in the first and third examples and 937.45 s
for 250 generations in the second example (see the fifth
column of Table 4). Therefore, the proposed hybrid
learning algorithm with the FEC, the MPSO, and the
RSVD can improve the learning performance efficiently. In
the future work, we will continue to improve our method
by reducing its complex computation.
6. Conclusion

In this paper, a novel hybrid learning algorithm for
TNFNs has developed. We use fuzzy entropy clustering
(FEC) to generate base particles and propose the modified
PSO (MPSO) to improve effectively the performance of the
traditional PSO. The MPSO is used to find the optimal
antecedent parameters of fuzzy rules. In addition, we also
use the RSVD to determine the optima consequent
parameters of fuzzy rules. The RSVD need fewer
computation time and space requirements than the
traditional SVD. In experimental results, we show that
the hybrid learning algorithm has a better learning
performance than the traditional GA and PSO methods.
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